Reconstructing Daily Discharge in a Megadelta Using Machine Learning Techniques

نویسندگان

چکیده

In this study, six machine learning (ML) models, namely, random forest (RF), Gaussian process regression (GPR), support vector (SVR), decision tree (DT), least squares (LSSVM), and multivariate adaptive spline (MARS) were employed to reconstruct the missing daily-averaged discharge in a mega-delta from 1980 2015 using upstream-downstream multi-station data. The performance accuracy of each ML model assessed compared with stage-discharge rating curves (RCs) four statistical indicators, Taylor diagrams, violin plots, scatter time-series heatmaps. Model input selection was performed mutual information correlation coefficient methods after three data pre-processing steps: normalization, Fourier series fitting, first-order differencing. results showed that models are superior their RC counterparts, MARS RF most reliable algorithms, although achieves marginally better than RF. Compared RC, reduced root mean square error (RMSE) by 135% 141% absolute 194% 179%, respectively, year-round However, developed for climbing (wet season) recession (dry limbs separately worsened slightly Specifically, RMSE falling limb 856 1,040 m3/s, while obtained 768 789 respectively. DT is not recommended, GPR SVR provide acceptable results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing Textual File Fragments Using Unsupervised Machine Learning Techniques

....................................................................................................................................................... ix Chapter 1 .......................................................................................................................................................

متن کامل

daily discharge estimation in talar river using lazy learning model

introduction: river discharge as one of the most important hydrology factors has a vital role in physical, ecological, social and economic processes. so, accurate and reliable prediction and estimation of river discharge have been widely considered by many researchers in different fields such as surface water management, design of hydraulic structures, flood control and ecological studies in sp...

متن کامل

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

Partial Discharge Monitoring Of Dielectrics Using Machine Oriented Algorithmic Techniques

Partial Discharge monitoring provides a tool for the assessment of failure risk for high voltage plant and equipment. The measurement process is complicated by the presence of interference, transients and other sources of disturbance on the system. In practical monitoring systems these disturbances almost certainly fall outside the boundaries of any expert system for PD recognition. Because of ...

متن کامل

Modeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine

In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water Resources Research

سال: 2022

ISSN: ['0043-1397', '1944-7973']

DOI: https://doi.org/10.1029/2021wr031048